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Abstract. An algorithm to generate integrable systems is extended to the super case. Some

new examples of superextensions of integrable systems are illustrated. We also generalize the
trace identity due to Tu to the super case and use it to establish Hamiltonian structures of

superextensions of integrable systems under consideration.

1. Introduction

The superintegrable systems in general and the superextensions of the standard integrable
systems have been recently investigated. Many papers have been dedicated to the subject
(see, e.g. [1-8]). For the famous KdV equation, two kinds of extensions are well known:
one is the so-called supersymmetric KdV equation derived by Manin and Radul [2]; the
other is the Kupershmidt's version [3]. On the other hand, there has been active research
on searching for integrable systems based on Lie algebras and Kac—Moody algebras and
different methods have been constructed (see, e.g., [9-15]). Furthermore, some of the results
are extended to include Lie superalgebra (see, e.g., [4—7]). In [16], we have developed Tu’s
approach, and an effective algorithm to generate integrable systems is given. In this paper,
we generalize the results of [16] to the superextension case. Besides, the so-called Trace
identity to Hamiltonian structures of integrable systems [17-20] is also extended to the
super case.

This paper is arranged as follows. In the next section, we first introduce some notations
and conventions. A simple scheme to generate superextensions of integrable systems is
described and an illustrative example is given in detail. Some other interesting examples
are considered in section 3. In section 4, we give some examples to show that a hierarchy
of equations connected with (1) could also be derived in some special cases although
eo()) is not so-called pseudoregular. In section 5, the trace identity is generalized to
the superextension case and used to establish Hamiltonian structures of superextensions
of integrable systems under consideration. Finally, conclusion and remarks are given in
section 6.
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620 Xing-Biao Hu
2. A scheme to generate superextensions of integrable systems

Let us begin with the Lie superalgebs&(m /n) which is defined as

A B
sl(m/n) = {X: (C D),StrX:TrA—TrD:O}

where A is a (m x m) matrix, B a (m x n) matrix, C a (n x m) matrix, andD a (n x n)
matrix. The super Lie bracket is defined as [21, 22]

[X,Y] = XY — (=) OFrDyx VX,Y e sl(m/n)
where parityP (X) of X is defined as

A O
0 X_<O D) StrX =0

0 B
L ox-(08)

Here ’3 g) are even (bosonic) elements a éc)

sl(m/n), the corresponding superloopalgebra is

P(X) =

g) are odd (fermionic) ones. For
G =sl(m/n) ® C[r, A7} A IS an even parameter.

The Lie super bracket ofr is defined as
[X@A", Y @A =[X, Y] ® A",

Different gradations ofz may be available. In what follows, we always fix the gradation
as a natural gradation, i.e.

degX ® \") =n VX € sl(m/n).
We now consider the following spectral problem

where

I/f = (I/fls B 1,[fms merls B w'n+n)T
Y; (i = 1,...,m) is an even variabley; (i = m +1,...,m + n) is an odd variable,
and U = ep(A) + urer(A) + -+ + upe,(A). Heree (W)@ = 0,1,...,p) € G and
ei(M)(i = 1,..., p) is an even or odd element; is an even (odd) variable &; (1) is
an even (odd) element. Similar to [14-18], we assumedh@d(i = O, ..., p) meets the
conditions:

(i) eo(r), ex(1), ..., e,(2) are linearly independent;
(ii) eg(r) is even and pseudoregular, i.e.

G = Keradeg(A) @ Imadeg(A)
Keradeg(A) is commutative where

Keradeg(h) = {X|X € G,[X, eo(A)] = 0}

Imadeg() ={Y € G,st. Y =[X, eo(M)]}

(i) do > 0,do > dy > d» > --- > d,, whered; = dege;(1). A simple scheme for
generating superextensions of integrable systems can easily be copied from [16-19]. The
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scheme contains two steps. First, we take a solutior= ) >~ V;A~" of the co-adjoint
equation associated with (1),

V., =[U, V]. (2)
Second, we search fora, € G such that for

V= V), 4 A,
the following holds:

—V® +[U, V?] € Cer(h) + Cex(A) + - - - + Ce, (1).

This requirement yields a hierarchy of superextensions of evolution equations:

U —v® 4 [u,v™] =o0.

Here and in the following, we always denate' V) = >/, V;A"~". Similar to the proof
of proposition 2 in [16] and replacing the second equation §fi(8[16] with

(Strvh, =0, k=1,....m+n
we can obtain the following result.

Proposition 1 There exists a non-zer¥ = Y ° V;A~" € G such that (2) holds and
elements of matri¥/; are all pure polynomials af;(i = 1, ..., p) and their derivatives.

From proposition 1, we deduce that
—W'V)g U, W'V) ] = A"V)_ = [U, A"V)_] 3)

where (A"V), = Y1 VA" and (W"V)_ = A"V — (A"V),. It is easy to see that the
terms on the left-hand side of (3) are of degrees not lessdhaa (d, —|d,|)/2, while the

terms on the right-hand side are of degrees not greaterdfanl, therefore the terms on
both sides are of degrees ranging over the intedval[d,, do — 1]. Thus we deduce that

—V) + U, 0V =) f;

ied

for somef; € G; = {x|degx =i, x € G}. Therefore, when we take (1), ...,e,(1) as a

basis of®;;G;, we could in general derive a hierarchy of integrable equations. In order to
reduce the number of potentials, we need to consider the reduced spectral problems of (1)
and various subalgebras 6f. In the following, we give an illustrative example to describe

the scheme.

Example 1 Consider the subalgebtd0, 1) of s/(2/1). Its basis is

1 0 O 010 0 0 O
Eoz[O O:| E1=|:0 0 0:| Eg:[l 0 O:|
0 0 0 0O 0 0O

0

0

-1
0
0 0 1 0 0
E; = |:0 0 0:| Es= |:0 1:|
0 -1 0 1 00

where Eg, E1, E; are even elements ands, £, are odd ones. Their non-zero
(anti)commutation relations are

[Eo, E1] = 2E; [Eo, E2] = —2E; [Eo, E3] = E3 [Eo, E4] = —E4

[E1, E2] = Eo, [E1, E4] = E3 [E2, E3] = E4 [Es, E3] = —2E;

[E3, E4] = Eg [Es4, E4] = 2E>.
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SetG; as a linear span ofEq ® A%, Eq @ A"+, E, @ A2 E3 @ A3 E4®
Adnrealn e 7, d is an integer greater than 1 amdare integers such thatQ e¢; < d (i =
1,2,3)}. We can easily verify thaG, is a subalgebra a#(0, 1) ® C[x, A~Y] iff
e1 + e = 0 (modd) e1+ es = e3 (Modd) ez + es = 0 (modd)

2e3 = e1 (Modd) 2¢4 = ex(modd). 4)
Here we only consider two cases.

Case I.We have the following solution of (4)d = 2,e; = ¢; = 0,e3 = e4 = 1.
Furthermore, takinglp = 2,d, = 0, andeg(A) = Eo ® A2, we get the following new
spectral problem

Iﬁx = UW
where
A+ w u e
U=E0A2+uE1+vE2+wEo+eE3A~|—,BE4A=[ v 22— w A,Bi|.
A8 —Ae 0

Hereu, v, andw are even potentials andand 8 are odd ones. Set

a b d
V:an+bE1+CE2+dE3+€E4=|:C —a €:|
e —d O
= Z(an)\‘*Zn Eo + bnA72”E1 + Cn)\72” E> + d,lA72”71E3 + enA7M71E4)

n>0
wherea, b, andc are even and ande are odd. FronV, = [U, V], we deduce that
a, =uc+ ree+ ABd — vb
b, = —2ua + 2A%b — 2ked + 2wb
cx = —2)\%c + 2va + 2ABe — 2we (5)
dy = \2d + ue — rea — ABb + wd
e, = —A%e + ABa — rec + vd — we
or
Ay = UCy + €ey + Bdy — Vb,
by = —2ua,, + 2b,11 — 2ed,, + 2wb,,
Cmy = —2Cmi1 + 2va, + 2Be, — 2wey, (6)
dpy = dpy1 + uey — €ayr1 — Bbypyr + wdy,
Cmny = —€m+1+ Bami1 — €Cpr1 + vdy — wey,.
We now give the first few ofi,,, b,,, ¢, d,n, ande,,:
bo=co=0 ag = k = constant£ 0 (k is even
do = ke eo = kpB c1=kv b1 =ku a; = kBe
dy = k(e; — we) e1= k(=B —wp)
In general, we can obtain recursively from (6) all g, b,,, ¢, d,n, @nde,,. On the other
hand, we have
a, b, A, _1
—(F V) +[U, 32 V)y] = — ( € Mn—l)
ren1 —Ad,-g O 77
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w u Le a, b, O
YY)
A8 —xe O 0 0 O

w u 0 0 0 Ady_1
+|:<v —w O), ( 0 0 )»en—l)]-
0 0 0 )»en,]_ —)»dn,]_ 0

Therefore, we can deduce a hierarchy of equations

u; = by, + 2ua, — 2wb, vy = Cuy — 2Va, + 2wey, W; = dpy — UCcy, + vby,

€& =dy_1, —ue,_1+ €a, + Bb, — wd,_1 B = en—1, — Ba, +€c, —vd,_1+ we,_1.
)

In particular, taking: = 1 in (7), we have

u, = k(uy + 2ufe — 2wu) v, = k(vy — 2vB€ + 2wv) w; = k(Bé)y

€ = k(ex — we) Br = k(Bx + wp).

Case II.We have the following solution of (4)d = 4,e; = ex = 2,e4 = 3,e3 = 1.
Furthermore, takélp = 2,d, = 0 andeg(X) = (E1+ E2) ® A2, and consider the following
new spectral problem

Wx:Uw

where

u A% e
U= (E1+ E)A> 4+ uEq+ €Ezh = |:A2 —u o]
0 —x O

Hereu is an even potential andis an odd one. Set

a b d
V=aEo+bE,+cEy+dE3+eEs = |:c —a ej|
e —d O
_ Z(an)‘-74nE0+bl1)‘-74n+2El +cn)54"+2E2+dn)74"+1E3+en)F4"+3E4)
n=0
where a, b, and ¢ are even andd and ¢ are odd. Then similar to case |, from
U — V), +[U, W*V),] = 0, we can deduce a hierarchy of equations

Uy = dp, & =d,, —ud, + €a, (8)
where all theqa,,, d,, can be calculated recursively from the following relations
Anxy = Cm+1 — bm+1 + €€p+1 bmx = _zam + Zubm - 26dm Cmx = 2am - 2MCm
dmx = €m+1 + udm — €y €y = dm —uey, — €Cy, (9)

with the initial valueseg = 0, bg = cp = k = constantZ O (k is even). For example, the
first few of a,,, b,,,, ¢, d,y, @ande,, are

ap = ku do = ke e1 = ke, by = S(—ku® — ku, — kee,)
1= %(—ku2 + ku, — 3kee,) a = %k(uxx — 3e€yy) — %ku(’/‘z + 3e€y)

1 1_2 3 3 3,2 3
dy = k(€xx + uex + 5€u, — 5€u°) €2 = k(€xxx + SUxEx + J€UL — JUT€Ex — S€UUY)

1 1.2y, 3 9
by + c2 = k[—35 Uty — 3UT) + SUEE, — SULEE,

+231M4 - Z(Eexxx - Exexx) + 666)(”2]
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Thus, takingn = 1 in (8), we, in particular, have
1 3 3 3,2 3 3
ur = k(z“xxx — 2€x€xx T 2€€xxx T QU Uy — SUEEL — Queexx)

2 3

(10)
3 3 3
€ = k(€xxy + SUx€x + J€U — JUTEr — éeuux).

3. Further examples

In this section, we shall consider some other examples.

Example 2.Considers/(2/1). Its basis is

010 0 0O 0 0O
E1:|:0 0 Oi| E2:|:O 0 1:| F1:|:1 0 0:|
0 0 O 0 0O 0 0 O
0 0O 0 0 1 0 0 O
F2=|:O 0 0:| G1=|:O 0 O] G2=|:0 0 O]
010 0 0 O 1 00
1 0 O 0 0O
H1=|:O -1 0:| H2=|:O 1 0:|.
0O 0 O 0 0 1

Their (anti)commutation relations are given in [4]. $&tas a linear span diH, QA" , E,®
rdnre B @ A th G, @ AT n e Zya, b = 1,2;d is a positive integere,, f, and g,
are fixed integers. Obviouslyj, is a subsuperalgebra ¢f iff

e, + fa=0(modd),a =1,2;e1+ e; = g1 (Modd), e1 + g2 = fo (Modd). (12)
It is easy to give the following two solutions of (11).
Caseld=2e1=e2=f1=fo=1,g1=g2=0.
Caselld=4,e1=fi=2,e2=g,=1, fo=2g1=3.
Let us first consider case I. In this case, we take
eo(A) = (E1+ F1) ® A
and consider the following spectral problem
wx = UW

where

u A €
U=(E]_+F1))\.+MH1+€G1+,BG2:[)\. —u 0]
B 0 O

with u being an even potential ardand 8 odd ones. Set

a C e
V=aH1+bH2+CE1+dF1+€G1+fG2+gE2+hF2=|:d —a—+b g:|
f h b

=Y (@A " Hy+ b, " Hy+ e,0 "2 Gr+ f,h 72" G+ guh ™2 E

n=0

He AP E 4 d TR+ b2 R)
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wherea, b, ¢, andd are even and, f, g, andh are odd. Similar to example 1 in section 2,
from U, — 0W®'V),, + [U, 3*'V),] = 0 we can deduce the corresponding hierarchy of
equations

Uy = dpy — Efn + enﬂ € = €py —Uey + (an - bn)€ ﬂt = fnx + ufn + (bn - an)ﬂ
(12)
where all thea,,, b,,, e,,, f,» can be calculated recursively from the following relations:

Anx = p+1 — Cm+1 + G,ﬁn + ﬁem bmx = ﬂem + 6fm
Cimy = Zucm + (_Zum + bm) + Ghm dmx == 2am - bm - 2udm + ﬂgm (13)

Cmx = &m+1 T Uuey + €(by — an) fmx = _hm+1 + Bla, — by) — uﬁn
8my = €m — UZm — €y Ry = — fin + uhy + Bem.

We now give the first few ofi,,, b,,, ¢, din, ey, @and f,,, in two cases.
Case (a).go = ho = 0. Setdy = ¢o = k = constant£ 0 (k is evern. Then

ep = ke fo = k,B bo =0 ap = ku hl = —kﬂx 81 = kéx
di = Y(ku, — ku® — kep) c1= 3(—kuy — ku® — kep)
€1 = k(exx + ue, + %Eux - %Guz) fl = k(ﬁxx - M,Bx - %,Bux - %,Buz)
bi=k(eB —exfp—uef) a1 =k(Guw — je.B+ 3efy — 3u° — uep)

Case (b).go = ho = 0. Setdp = cp = 0, ap = k = constant£ 0 (k is even. Then
eo= fo=0 g1 = —ke hy = —kB di=c=0 e1 = —ke, — kue
S1=kBx —kup by = kep ap=0

Corresponding to two different choices o§, by, co, do, eo, fo, g0, and hp we have two
hierarchies of equations. In particular, for case (a), taking 0 in (12), we have

Uy = k(%”xxx + gexxﬁ - Zaléﬂxx - guzux)
€ = k(€xxy + guxex + %u“e — guzex — guuxe + %eex,B)
Br = k(Bexx — 3uxBr — JureB — U — Juuyf + 3Bepy).
For case (b), taking = 1 in (12), we have
Uy = _k(GIB)x
€& =k(—€,x —uye+ uze)
B = k(Bux — usB — u®p).
Next we consider case Il. In this case, we take
eo(h) = (E1+ F1) ® A2
and consider the following spectral problem
1//x = Ulﬂ

where

u A2 0
U=(E1+Fl)k2+uH1+vH2+eE2A+/3G2A:|:A2 —u+v Ae:|
AB 0 v
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with u, v being even potentials and 8 odd ones. Set

a C e
V=aH1+bH2+CE1+dF1+€G1+fG2+gE2+hF2=|:d —a—+b g:|
f h b

= Z(an)\_4n Hl + bn)“_4n H2 + en)\_4n+3Gl + fn)\_4n+1G2 + gn)"_4n+lE2

n=0

+Cn)\‘74n+2E1 + dn)\'74n+2Fl + hn)\’74n+3F2)

where a, b, ¢, and d are even ance, f,g, and 1 are odd. FromU, — (A'V),, +
[U, »*V),] =0, we can deduce a hierarchy of equations

Uy = Apy Uy = bnx € = &nx +ug, —€ay
.Bt :fnx+(u_v)fn_ﬁ(an _bn) (14)
where all thea,,, b,,, f,,, andg,, can be calculated recursively from the following relations:

Ay = Amy1 — Cpy1 + Bemi1 by = Bepy1 + €hpy

Cmx = _Zam + bm + (2’4 - U)Cm dmx = 2am - bm + (U - 2M)dm + éfm + ﬂgm

€nx = 8m + (Ll - U)em — €Cpy fmx = _hm+1 + ﬂ(am - bm) + (U - u)fm

8my = €m+1 — UZm — €Ay, hmx = _fm + Mhm + ,ch~ (15)

We now give the first few ofi,,, b, cin, dus €ms fin> &n>» @andh, in two cases.
Case (a).eg = hg = 0. Setdy = cog = k = constant£ 0 (k is even. Then

go=ke  fo=kB  bo=kBe  ao= 3k(2u —v)+ LkBe

Case (b). e9 = hop = 0. Setdy = co = fo = go = 0,a0 = k = constant#
0 (k is even, bg = 2k. Then

/’l1 = —k,B e = —ke dl =0 c1 = kE,B 81 = —kéx — k(v — M)G
Ji=kBx — kup by = k(exp — €fx + vep) ay = —kep, + kuep

Corresponding to two different choices o, bo, co, do, eo, fo, go and hg, we have two
hierarchies of equations. In particular, for case (a), taking O in (14), we have

= 3ku—v+pes v =kfe).  &=k(ex+3ve) B =k(B:— 30P).
For case (b), taking = 1 in (14), we have

U = k(_eﬂx + ueﬂ)x Vr = k(ex/s - Eﬂx + UE,B)X

€ =k[—€xx — (v —u)re —ve, —u(v — u)e] B = k[Bxx — uxB — v —u(u —v)pl.
Example 3.0sp(n, 2r) is defined as [22]
ATG +GA =0, G =1,

A B
< >| B'G - HC =0, 0 I
C D H =

D'TH+HD=0 —-I. 0

It is a subsuperalgebra of(n/2r). In the following, we only considepsp(2, 2) for the
sake of convenience in the calculation. A basi®gs(2, 2) is as follows,

0 1 00 000 O 00 0O
-1 00 O 000 O 0000
Eo=119 00 0 Ex=19 01 o E2=10 00 1
0 00 O 0 00 -1 0 00O



Superextensions of integrable systems 627

r0O 0 0 O rO 0 1 O 0O 0 0 1
0 0 0O 0 0 0O 0O 0 0O
Es=19 0 0 0 E“_oooo] Es=1_1 00 0
|0 0 1 0 L1 0 0 O 0O 0 0O
r0 0 0 O rO 0O 0 O
0 01 O0 0O 0O 01
Es=10 0 0 0 Er=109 -1 0 0
L0 1 0 O LO 0 0 O
where Eg, E1, E>, and E3 are even elements any, Es, Eg, and E7 are odd ones. Their

non-zero (anti)commutation relations are

[Eo, E4] = —Es [Eo, Es] = —E7 [Eo, Ee] = Ea [Eo, E7] = Es

[E1, Eo] = 2E; [E1, E3] = —2E3 [E1, Eq] = —E4 [E1, Es] = Es

[E1, E¢] = —Es [E1, E7] = E7 [E2, E3] = E1 [E2, Eq] = —E5

[E2, Ee] = —E7 [E3, Es] = —E4 [E3, E7] = —Ep [E4, Eq] = 2E3

[Es, E7] = —Ep [Es, Es] = —2E> [Es, E¢] = Eo [Es, E¢] = 2E3

[Es, E7] = —E1 [E7, E7] = —2E;.

Set G, as a linear span ofEy ® A"t E1 @ A", E; @ A2 Ex @ A%t E7Q®

Adnrer| e Z,d is a positive integer,ep, e, . . ., e7 are fixed non-negative integers. It is
easy to show thaG, is a subsuperalgebra ofp(2, 2)) ® C[r, A~] iff

eo + e4 = eg (Modd) e + es = e7 (Modd) eo + eg = e4 (Modd)

eo + e7 = e5 (modd) e> + e3 = 0 (modd) er + e4 = es (Modd)

2e4 = e3 (Modd) 2¢5 = e, (Modd) es + eg = eg (Modd). (16)
Here we only consider the following solution of (16):

d=4 ep=er=e3=2 es=eg=1 e =e7=3.

In this case, a linear span ¢Eo ® A*'*2, E; @ A%, E> @ A*+2, E3® A% E,®
A8 Es @ Al Eg @ A%t E; @ A%t3 n e Z) forms a subsuperloopalgebra of
0sp(2,2)) ® C[r, ,71]. Takeeo(r) = (Eo+ E>+ E3) @ A2. We consider the following new
spectral problem

wx = UI//
where
0 2 0 e
—22 0 A8 O
—xe 0 u A2
0 A A2 —u
with u being an even potential ardand 8 odd ones. Set

U = (Eo+ Ez 4 E3)A?> + uEy + €Esh + BEch =

0 a e f
—a 0 g h
V=aEo+bE1+cE;+dE3+eEs+ fEs+ gEs+ hE7 = —f —h b
e g d —b

— Z(an)"74n+2EO+bn)"74nEl +Cn)\'74n+2E2+dn)\'74n+2E3

n=0

+€,1)L_4n+3E4 + fn)\-_4n+1E5 + gn)\-_4”+lE6 + hn)\._4n+3E7)
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where a, b, c, andd are even anck, f, g, and 1 are odd. FromU, — A*'V),, +
[U, »*V),] =0, we can deduce a hierarchy of equations

u; = by, € = fu, +€by —ufy Br = gn, + ugn — Bby a7
where all theb,, f,,, andg, can be calculated recursively from the following relations

Ay = €8m + ﬂfm bmx =dm+1l — Cp+1 — €€y — Ima-HL
Cmy = —2by + 2uc,, — 2¢fy, dyy = 2by — 2ud,, + 288y (18)
eny = 8m — fm —uey, — Bay + edy, Snx = hmg1 — emgr +ufy, — €by,

8my = —€m+1 — M1 — ugm + Bby hiny = —8m — fn + tthy + Bew + €an,
with initial conditions
ho=¢=0 do = cg = k3 = constant ag = ko = constant(k; are even
fo=3ki(e+B) + 3kale —B) o= 3ka(B —€) + 3ka(e + B)
bo = ku + 3 (ko — ky)ep
Setn = 0, then (17) becomes
Uy = kyy + 3 (k2 — k1) (eB)s
& = 3(ky+ ko)ex + 3(ka — ko) By + 5 (ks — k)u(e — B)
Br = 3k + ko) B + 3(ka — kn)ex + 5 (ko — kp)u(e + B).

4. Other cases:eg() is not pseudoregular

Note that in sections 2 and 3 we only considered the case w@n appearing in the
spectral problem (1) is so-called pseudoregular. Thus a natural problem arises of whether
a hierarchy of equations connected with (1) could be derived whér) is not so-called
pseudoregular. Generally speaking, the answer is negative as, in this case, the co-adjoint
equation (2) is not guaranteed to have solution in general. However, for some special
cases, it is possible to derive a hierarchy of equations connected with (1)egtigris not
pseudoregular. To illustrate this, let us consider the superaldghyadefined as [22]

b(n):{(A B >|TrA=0 B'=B CT=—C}.

c -—-AT
In the following, we only consideb(2). A basis ofb(2) is as follows,
1 0 0 O 01 0 O 0 00 O
0O -1 0 O 00 0 O 1 00 O
Eo=10 0 -1 0 Ei=10 0 0 o E2=10 0 0 -1
L0 0 0 1 00 -1 0 0 00 O
0 0 0 O 0 0 0 1 0 010
0O 00O 0 010 0 00O
Es=109 100 Es=10 0 0 0 Es=10 00 0
L-1 0 0 O 0 00O 0 00O
0O 0 0 O
0 0 01
Es=19 0 0 o}
L0 0 0 O
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whereEq, E1, and E, are even elements arftk, E4, Es, and Eg are odd ones. Sefs as a
linear span of Eg@1?", E1QA2"*L, E,@A%H E,@0%, Es@A?*L, Eg@12t n e Z).
It is easy to show thaf's is a subsuperalgebra 6t2)) ® C[1, »~1]. We now consider the
following spectral problem

wx = UW (19)
where
U=(E1+E)) +uEg+e€Ey (20)

with # being an even potential ardan odd one. It is easily verified thaE; + E2)A is not
pseudoregular. However, a detailed calculation shows that we can deduce a corresponding
hierarchy of equations connected with (19) and (20). Here we only give the first non-trivial
equation

1 2
Uy = Q(GUrry — UUy)

1 1 32 3,2
€ = 70€xxy — zKyxy + JuU — Jou€, — 3ouu e

wherex is an even constant ardis an odd constant.
Similarly, we can deduce corresponding hierarchy of equations connected with the
following spectral problem:

Yo =U¢¥ = AEo+uE1+vE> + €Es + BEg)Y.

Here u and v are even potentials and and g are odd ones. Obviously,Eqy is not
pseudoregular. Besides, we can also consider the superalgebrdefined as [22]

dn) = {(2 ﬁ) |A e gln), B e sl(n)}.

5. Supertrace identity

In this section, we shall present a supertrace identity and use it to establish corresponding
Hamiltonian structures of the superextensions of integrable systems under consideration in
sections 2 and 3. As the proof of supertrace identity is very similar to that in [17-20], we
only give results without proof.

Theorem 2 Suppose that the solution of equation (2) is unique in the sense that two
solutionsV; and V, of the same rank differ only by a constant factéti = aV;, « is an
even constant. Then it holds that

LE Str<VaU) = (AV <8> )J’) Str(aU V) (21)
81/!,' oA oA 8u,~

whereV satisfies the co-adjoint equation (2).

In what follows, we only give corresponding Hamiltonian structures of (8) as an illustrative
application. We can easily obtain that

SU a b d 0 2v ¢
Str(VM> = Str<c —a e)(zk 0 0) = 2Ab + 2\c — 2ec
e —d 0/ 0 — O

GU 1 0 O0,.,a b d
Str(V) = Str(O -1 0)(0 —a e) =2a
du 0 0 0/\e —d 0
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aU 0O 0 Ax a b d
Str(V) = Str(O 0 O)(c —a e) = 2)e.
d€ 0 -2 0/\¢e —d 0

In this case, (21) becomes

8/8u ([0 24
() s 220 = (3 (2 )0 (2) -

(%22) by + 1 = e0) = (v = 4) (“g‘l) . (23)

n

or

In particular, taking: = 1, we have

—2ku ku
(—Zkex> = -4 (kex> ’

Therefore,y = 2. Whenn = 2, we know from (23) that

1
(j;) =2 (‘;ﬁ‘;g‘) (bs + c2 — e26).

In general, we can write (10) in the Hamiltonian form

()= (6 ()= 2) (580 e

whereH, = (b, + ¢, — e,€)/(2— 4n). In particular, (9) can be written in the Hamiltonian
form

o 0 6/8
(Z) = (O 1) (5%? ) k(—2uue + 2u? + 3uee,. — 6u,ee,
t

3 4 9 2
+aU" — €€y + 26,60 + JuU‘€Ey).

Remark The supertrace identity (21) was first presented in [23]. It is noted that in [8] the
supertrace identity was also applied to establish the Hamiltonian structure of superintegrable
systems.

6. Concluding remarks

In this paper, an algorithm to generate integrable systems is extended to the super case. Some
new examples of superextensions of integrable systems are illustrated. We also generalize
the trace identity due to Tu to the super case and use it to establish Hamiltonian structures of
superextensions of integrable systems under consideration. To our knowledge, the equations
obtained in sections 2 and 3 are all new. It is noticed that in [7] Inami and Kanno
extended the Drinfeld—Sokolov method to the supersymmetric case. As we mentioned
in the introduction, there are two kinds of superextensions of the KdV equation: the so-
called supersymmetric KdV equation derived by Manin and Radul and the Kupershmidt's
version. The new equations found in this paper belong to the class of the Kupershmidt's
superextension while the equations derived by Inami and Kanno may be viewed as to be
in the class of Manin—Radul's superextension. However, as we have seen, in both cases
Lie superalgebras play a key role in deriving superintegrable systems. In this paper we
mainly focus on generating superextensions of integrable systems. Naturally, the algebraic
and geometric properties of these new equations could be further considered. Also the
corresponding recursion operators of these equations could be derived.
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